Repairing flow: what to do at the site

Repairing flow: what to do at the site

Strategy 1. Reduce the velocity of instream flow

Suitability of strategy: this strategy will be most effective where catchment-wide stormwater management has already been implemented.

Action	Explanation	Conditions where action is most likely to be suitable and effective	Other references recommending action	Guidelines for implementation
1a. Encourage the channel to naturally self-adjust See Repairing geomorphology: what to do at the site and in the catchment factsheet, Strategy 3	Natural self-adjustment to flow helps to slow instream flows because high-energy water loses some of its power when it transports sediments.	Where the soil surrounding the stream is erodible (e.g. sand, clay, gravel) – not bedrock. Where there is sufficient buffer space for channel adjustment. If the waterway is lined with concrete there must be sufficient space for earthmoving machinery to access the site without doing substantial damage to riparian vegetation.		See associated factsheet
1b. Reconfigure the channel to promote sinuosity and widening	Reconfiguring the channel so that it is wider and more sinuous will increase the area available to transport water – slowing flow. Wider, sinuous channels also increase the contact between instream water with rough (turbulent) surfaces (i.e. the channel edge) which help to slow instream flow.	When rapid change in channel form is desired (i.e. waiting for natural channel adjustment is not feasible), and where earthworks will not create substantial damage to riparian vegetation (e.g. new developments or highly degraded urban sites).	[1, 2]	See river restoration manuals
1c. Add large woody debris (LWD) to the channel	LWD creates roughness and turbulence, leading to a reachscale reduction in flow velocity.	Where streams would naturally have contained wood. Where earthmoving machinery can access the site. Where the channel is narrow (< 10 m) and where a large amount of wood is being added. Where urban scouring flows have been repaired such that LWD will not be swept away and damage downstream infrastructure. Note, LWD is unlikely to increase flood risk unless wood occupies > 10 per cent of the channel cross-section. Take care with LWD placement so bank stability is not undermined. If concerns exist about the risk to urban infrastructure, we recommend using the Large Wood Structure Stability Analysis Tool <http: <br="">www.fs.fed.us/ biology/nsaec/products- tools.html>[3]. The associated resource [4] describes the process and may also be useful.</http:>	[5-8]	[2-4, 8-12]

Page 9

Australian Government Department of Industry, Innovation and Science

Business

Cooperative Research Centres Programme

Action	Explanation	Conditions where action is most likely to be suitable and effective	Other references recommending action	Guidelines for implementation
1d. Use engineering structures (cross vane, w-weir, j-hook vane, check dams or side- cast weirs). See Repairing riparian function: what to do at the site, action 2g	Numerous engineered structures can be constructed instream to reduce flow velocity.	Novel waterways in new urban developments. Pre-existing urban drains where actions Ia or Ib are not appropriate – e.g. where there is no room or funding available for channel adjustment or redesign, or LWD is likely to be swept away by scouring urban flows. Care should be taken to ensure that these structures do not impact in-stream connectivity (e.g. fish movement), particulary in lower stream reaches.	[1, 7, 13]	See associated factsheet
1e. Roughen channel lining using rocks and macrophytes See Repairing riparian function: what to do at the site factsheet, action 2ce	As the roughness of the channel increases it creates more turbulent flow, which slows overall water velocity	Most sites. Rocks are most suited to sites where very scouring urban flows occur. Macrophytes should be supported during the establishment phase using geofabric, but may not be suitable at some sites.	[2, 6]	See associated factsheet
1f. Improve hydrologic connectivity between the waterway and its riparian floodplain by grading the bank, lowering the floodplain/ raising the channel, removing levees and unblocking wetland feeder creeks	Urban channels are typically incised: lowering the floodplain, grading the bank or raising the channel bed will improve the overbank flow of water from the main channel to the floodplain. This transfer of water will reduce the velocity of instream flows.	Where a series of natural floodplain wetlands or lakes exist on the urban river network. Where floodplain inundation does not pose a threat to people or urban infrastructure. Where earthworks do not create substantial damage to riparian vegetation (i.e. new development).	[14-16]	[9]
1g. Create ponds, wetlands and other topographical depressions on the riparian floodplain	The creation of wetlands and other depressions on the floodplain will increase the capacity of the riparian land to store floodwaters, slowing instream flow.	Where few wetlands and depressions currently exist. Where enough floodplain space is available for wetland creation. Where floodplain inundation does not pose a threat to people or urban infrastructure. Where earthworks do not create substantial damage to riparian vegetation (i.e. new development).	[15]	[9]
1h. Repair riparian vegetation	Revegetating the riparian buffer will increase flow roughness and slow the velocity of overbank flow.	Sites where hydrologic connectivity is good (i.e. the channel is not very incised or action 1h has been done). Where the vegetative buffer is wide > 30 m so it can absorb a large volume of flow.	[6, 9, 14]	

CRC for Water Sensitive Cities

Suitability of strategy: the height of the local watertable is likely to be controlled by larger off-site processes; hence actions to repair baseflow at the site scale are likely to be less effective than catchment-scale strategies.

Action	Explanation	Conditions where action is most likely to be suitable and effective	Other references recommending action	Guidelines for implementation				
Where urbanisation has led to a decrease in baseflow								
2a. Remove impermeable channel lining	An impermeable channel lining (e.g. concrete, compacted clay) prevents the inflow of groundwater.	Where the channel is lined with an impermeable material (e.g. concrete, clay).		Not applicable				
2b. Lower channel to reconnect the stream with shallow groundwater (i.e. excavate a pool to create a low-flow refuge)	Lowering the channel will increase contact with a falling watertable.	Where earthmoving equipment can access the site without causing too much ecological damage. Lowering the channel could lead to further drainage and exacerbate the falling of the watertable. We recommend this approach only be undertaken in patches – i.e. to create pools that provide low-flow refuges. When creating a pool, take care to ensure the upstream end does not create a knick point that leads to upstream erosion.						
Where urbanisation has led to an increase in baseflow								
2c. Plant native deep- rooted trees in high density, particularly species with high water consumption	Deep-rooted trees that have a high evaporative demand, such that some eucalypts (e.g. blue gums) may cause a local lowering of the watertable.	Where the riparian buffer is wide enough to support a large number of trees. Where riparian vegetation would naturally have been forested.						

Supporting documents

- 1. Miller, J.R. and C.R. Kochel (2010) Assessment of channel dynamics, in-stream structures and post-project channel adjustments in north carolina and its implications to effective stream restoration. Environmental Earth Sciences, 59: p. 1681-1692.
- 2. Rutherford, I.D., et al. (2000) A rehabilitation manual for Australian streams: volume 2. Cooperative Research Centre for Catchment Hydrology. Land and Water Resources Research and Development Corporation. Available from: http://www.engr.colostate.edu/~bbledsoe/CIVE413/Rehabilitation_Manual_for_Australian_Streams_vol2.pdf.
- 3. Rafferty, M. (2017) Computational design tool for evaluating the stability of large wood structures. Department of Agriculture, National Stream and Aquatic Ecology Centre. Fort Collins, Colorado, USA. Available from: https://www.fs.fed.us/biology/nsaec/assets/rafferty_usfs_nsaec_tn-103-2_stabilitylargewoodstructurestool.pdf.
- 4. Wohl, E., et al. (2016) Management of large wood in streams: an overview and proposed framework for hazard evaluation. JAWRA Journal of the American Water Resources Association, 52: p. 315-335.
- Elosegi, A., et al. (2016) Restoration of wood loading has mixed effects on water, nutrient, and leaf retention in basque mountain streams. Freshwater Science, 35: p. 41-54.
- 6. Rutherford, I.D. (2007) The influence of riparian management on stream erosion, In: Principles for riparian lands management, S. Lovett and P. Price, Editors. Land and Water Australia Canberra, ACT. Available from: https://arrc.com.au/wp-content/uploads/2015/08/px061170-chapter- 6.pdf.
- 7. Lawrence, J.E., et al. (2013) Hyporheic zone in urban streams: a review and opportunities for enhancing water quality and improving aquatic habitat by active management. Environmental Engineering Science, 30: p. 480-501.
- 8. Treadwell, S., et al. (2007) Wood and other aquatic habitat. Available from: https://arrc.com.au/wpcontent/uploads/2015/08/Wood%20and%20other%20 aquatic%20habitat.pdf.
- 9. Beesley, L., et al. (2017) Riparian design guidelines to inform the repair urban waterways. Cooperative Research Centre for Water Sensitive Cities. Melbourne Australia.
- 10. Brooks, A.P., et al. (2006) Design guideline for the reintroduction of wood into Australian streams. Land & Water Australia Canberra. Available from: https:// arrc.com.au/wpcontent/uploads/2015/08/Design%20guideline%20for%20the%20reintroduction%20of%20wood%20into%20Australian%20streams.pdf.
- 11. Erskine, W., et al. (2007) River restoration based on natural channel characteristics: how to develop restoration designs for different rivers and riparian plant communities. Australian rivers: Making a difference: p. 85-90.
- 12. 12. Shields, J., F Douglas, et al. (2000) Large woody debris structures for incised channel rehabilitation. In: Joint conference of Water Resources Engineering and Water Resources Planning and Management. Minneapolis, USA.
- 13. Rosgen, D.L. (Year) A hierarchical river stability/watershed-based sediment assessment methodology. In: Proceedings of 7th Federal Interagency Sedimentation Conference, Reno, Nevada, USA.
- McBride, M. and D.B. Booth (2005) Urban impacts on physical stream condition: effects of spatial scale, connectivity and longitudinal trends. JAWRA Journal of the American Water Resources Association, 41: p. 565-580.
- 15. Hopkins, K.G., et al. (2015) Assessment of regional variation in streamflow responses to urbanization and the persistence of physiography. Environmental Science and Technology, 49: p. 2724-2732.
- 16. Vietz, G.J., et al. (2016) Thinking outside the channel: challenges and opportunities for protection and restoration of stream morphology in urbanizing catchments. Landscape and Urban Planning, 145: p. 34-44.

River restoration manuals

- 17. Rutherford, I.D., et al. (2000) A rehabilitation manual for Australian streams: volume 2. Cooperative Research Centre for Catchment Hydrology. Land and Water Resources Research and Development Corporation. Available from: http://www.engr.colostate.edu/~bbledsoe/CIVE413/Rehabilitation_Manual_for_Australian_Streams_vol2.pdf.
- WRC (2002) River restoration. Water and Rivers Commission. Perth, Western Australia. Available from: http://www.water.wa.gov.au/watertopics/ waterways/managing-our-waterways2/river-restoration-manual.
- 19. Sardi-Caromile, K., et al. (2004) Stream habitat restoration guidelines: final draft. Co-published by the Washington Department of Fish and Wildlife and Ecology and the U.S. Fish and Wildlife Service. Olympia, Washington. Available from: http://wdfw.wa.gov/publications/00043/wdfw00043.pdf.
- 20. Cramer, M.L. (ed) (2012) Stream habitat restoration guidelines. Co-published by the Washington Departments of Fish and Wildlife, Natural Resources, Transportation and Ecology, Washington State Recreation and Conservation Office, Puget Sound Partnerships and the US Fish and Wildlife Service, Olympia, Washington.
- Harman, W., et al. (2012) A function-based framework for stream assessment and restoration projects. US Environmental Protection Agency, Office of Wetlands, Oceans, and Watersheds, Washington, DC EPA 843-K-12-006. Available from: https://www.fws.gov/chesapeakebay/StreamReports/ Stream%20Functions%20Framework/Final%20Stream%20Functions%20Pyramid%20Doc _9-12-12.pdf.

Repairing flow: what to do at the site

